
COMMISSIONED BY THE IPF RESEARCH PROGRAMME

RESEARCH

IPF Research Awards 2024  
Reconciling the Predictability of Returns 
from Commercial Real Estate Yields 

OCTOBER 2025



This research was funded and commissioned through an extension to the IPF Research Programme 
2022-2025.

This Programme supports the IPF’s wider goals of enhancing the understanding and efficiency of 
property as an investment. The initiative provides the UK property investment market with the ability 
to deliver substantial, objective and high-quality analysis on a structured basis. It encourages the whole 
industry to engage with other financial markets, the wider business community and government on a 
range of complementary issues.

The Programme is funded by a cross-section of businesses, representing key market participants. The IPF 
gratefully acknowledges the support of these contributing organisations:

®



Disclaimer
This document is for information purposes only. The information herein is believed to be correct, but cannot be guaranteed, 
and the opinions expressed in it constitute the judgement of the judgement of Nick Mansley, Zilong Wang and Colin Lizieri, 
University of Cambridge as of this date but are subject to change. Reliance should not be placed on the information and 
opinions set out herein for the purposes of any particular transaction or advice. The IPF cannot accept any liability with 
regard to the content or use of this document.

INTRODUCTION
In 2024, the IPF Research Programme launched its third grants scheme to provide financial assistance to promote real 
estate investment research. No specific themes were suggested and prospective applicants were encouraged to examine 
issues that would advance the real estate investment industry’s understanding of and implications for asset pricing, risk-
adjusted performance and investment strategy. The scheme was also open to individuals, working within institutional 
organisations, where the grant may be used to fund data acquisition.

The Grant scheme was first run in 2021, when three applicants were awarded grants, and again in 2023, when the 
programme provided grants for six successful submissions. This time, an appraisal of proposals received by the deadline 
of 30 September 2024 resulted in the provision of grants to two submissions, with limited supervision afforded by a 
sub-committee of the IPF Research Steering Group during the research period. 

Each paper is available to download from the IPF website. We hope you find them a diverse and interesting read. 

The following paper has been written by Nick Mansley, Zilong Wang and Colin Lizieri, University of Cambridge. 

Richard Gwilliam
Chair IPF Research Steering Group 
October 2025 



Executive Summary 

This study investigates the predictive power of commercial real estate (CRE) yields, 
specifically the cap rate, for future excess returns (the difference between total return and 
Government bond yield) in the UK. Cap rates vary over time, and these changes can be 
attributed to shifts in expected cash flow growth, risk-free rates, or risk premia. A high 
cap rate theoretically implies either a high property expected return or low expected 
rental growth, suggesting it should predict higher ex-post returns or lower ex-post rental 
growth, or a combination of both. 

Previous research has shown the real estate cap rate's relationship with ex-post returns to 
be inconsistent and unstable. The central finding of this study is that the instability in cap 
rate forecasts is primarily attributable to structural breaks in the cap rate's steady-state 
mean (or equilibrium level). To account for this, the study introduces an adjusted cap rate, 
defined as the deviation of the cap rate from its current steady-state mean. Utilising this 
adjustment substantially improves the in-sample forecasting power, demonstrating a 
strong ability to forecast excess returns for UK office, retail, and industrial properties 
across 8- to 20-quarter horizons. This validates the adjusted cap rate as a robust in-sample 
predictor. 

While the adjusted cap rate performs well in-sample, real-time forecasting presents two 
major challenges for investors: estimating if there has been a break (and its timing) and 
accurately determining the new mean cap rate after a break, especially when limited post-
break data is available. The study's analysis indicates that accurately estimating the 
timing of the break is not the primary issue, as breaks can be detected quickly (typically 
within nine quarters). Conversely, the estimation of the magnitude of the change in the 
mean cap rate after the break entails substantial uncertainty. Despite these challenges, the 
out-of-sample forecasts using the adjusted cap rate outperform a random walk model for 
office and retail properties (though not industrial) and consistently outperform the 
unadjusted cap rate forecasts. 

In conclusion, this research provides evidence that the cap rate's predictive power for 
CRE excess returns is restored once structural breaks are accounted for. The study's main 
contribution is the identification of structural breaks in the steady-state mean as the 
source of forecast instability and the introduction of the adjusted cap rate as a superior 
predictor. For market participants, the key takeaway is the necessity to test for structural 
breaks and to utilise the adjusted cap rate (deviation from the current steady-state mean) 
for more robust forecasting and investment appraisal. 
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1. Introduction 

Returns from real estate can be seen as driven by the commercial real estate yield at the 
start and changes in the cap rate and income over the holding period. Cap rates vary over 
time and these changes can be attributed to changes in expected cash flow growth, risk-
free rates, or risk premia. A high cap rate implies either a high property expected return, 
or low expected rental growth, or a combination of both. One implication is that a higher 
cap rate should predict higher ex-post returns and/or lower ex-post rental growth. From 
the stock market literature (see, among others, Campbell, 1991; Cochrane, 1992), most of 
the variation in dividend yields is attributed to changing forecasts of expected returns. 
Analogously, if most of the variation in cap rate is driven by changes in expected return, 
the cap rate should be able to forecast future excess returns. This study explores whether 
commercial real estate yields are predictors of excess returns and if not, why not?   

Previous research has identified that the relationship between cap rate and ex-post return 
does not always hold true. For example, using US data, Plazzi et al. (2010) find that cap 
rates can forecast expected returns for apartment, retail, and industrial properties, but not 
offices. Ghysels et al. (2007) show that cap rates can forecast returns in 16 out of 21 
regions in the US. Lizieri et al. (2024) find that cap rates can weakly forecast capital 
returns for office and retail property, but not industrials in the UK. In addition, they 
showed poor out-of-sample forecasting power of cap rates. These results set the 
motivation for this study. What are the sources of forecast instability? 

In this study, we demonstrate that forecast instability can be attributed to changes in the 
steady-state mean of cap rates over the sample period (i.e. change in the equilibrium cap 
rate). This indicates that the steady-state mean cap rate is subject to structural breaks. We 
define the adjusted cap rate as the deviation of the cap rate from its current steady-state 
mean. Utilising the shift in mean cap rate and adjusted cap rate, the in-sample forecasting 
power of the cap rate improves substantially. The adjusted cap rate can strongly forecast 
excess returns at 8-, 12-, 16 and 20-quarter horizons for office, retail and industrial 
properties in the UK.  

In real time, however, the in-sample forecasting power is hard to exploit. In real time 
forecasting, an investor faces two main challenges. First, they must estimate the timing of 
a break. Second, if a new break is detected, they have to estimate the new mean cap rate 



after the break occurs. If this new break happens toward the end of the sample available 
to the investor, the new mean can only be estimated using a small number of 
observations, which leads to significant estimation uncertainty.  

To evaluate these challenges, we conduct additional tests assessing the relative difficulty 
of estimating the break dates versus estimating the mean cap rate in real time. Our 
findings indicate that the real time estimation of the break dates is not crucial and the 
resulting prediction errors are small. In addition, we can detect the breaks with minimal 
delay, typically within nine quarters. Conversely, the estimation of the magnitude of the 
change in the mean cap rate after the break entails substantial uncertainty. To address the 
difficulty of estimating this new mean post-break, we define a transition period of five 
years following the break. During this period, we utilise the term structure of interest 
rates and the unemployment rate to determine the new mean of the cap rate. We show that 
the adjusted cap rate outperforms a random walk model (which uses historical average 
returns for prediction) for office and retail properties, but not for industrial properties. 
When applied to regional property indices, the adjusted cap rate outperforms the random 
walk model for most regional office and retail series. Notably, the adjusted cap rates 
outperform the unadjusted cap rate in out-of-sample forecasting in most cases. These 
results suggest that anyone seeking to use cap rates for forecasting and/or investment 
appraisal needs to: (1) test for structural breaks for cap rate; (2) utilise the adjusted cap 
rate (defined as the deviation of the cap rate from its current steady-state mean) following 
any break.1  

This study contributes to the literature in three aspects. First, we provide more evidence 
on the information content of cap rates and their ability to forecast future excess return. 
Unlike previous studies (Ghysels et al, 2007; Plazzi et al., 2010) that largely focused on 
in-sample analysis, we provide a comprehensive evaluation of the cap rate’s out-of-
sample forecasting performance which is more useful for market participants. Second, 
this study identifies the sources of forecast instability and discusses the implication of 
structural breaks. In addition, we introduce an additional predictor for use in commercial 
real estate (CRE) forecasting, based on the deviation of the cap rate from its mean.2 
Previous studies have primarily relied on macroeconomic variables (Krysalogianni et al, 
2004, Tsolacos et al., 2020); granular CRE indices (Van de Minne et al, 2002), sentiment 
(Dietzel et al., 2014; Beracha et al, 2019), real estate derivative prices (Bond and 
Mitchell, 2001), and surveys of market experts (McAllister et al., 2008; Papastamos et 
al., 2015; McAllister and Nase, 2020).  

 
1 The steady-state mean cap rate changed after the break. 
2 Because the mean cap rate differs before and after the break, the deviation is used to capture the structural 
break effect. 



The rest of the paper is organised as follows. Section 2 outlines the theoretical 
framework. Section 3 discusses the data and characteristics of cap rate. Section 4 presents 
findings for both in-sample and out-of-sample analysis. Section 5 discusses the 
investment implications of our findings and Section 6 summarises our conclusions.  

 

2. Theoretical Framework 

The total return (Rt+1) from holding a given commercial property from t to t+1 is: 

1 + 𝑅!"# =
𝑃!"# +𝐻!"#

𝑃!
 (1) 

where 𝑃!"# is the price of a commercial property at the end of period t+1 and 𝐻!"#is the 
net operating income (net rent) of a commercial property from period t to t+1. The rent-
to-price ratio 𝐻!/𝑃!,  known as the cap rate or yield, is analogous to the dividend-price 
ratio for stocks.  

If we take log transformation and define 𝑝! = log	(𝑃!), ℎ!"# = log	(𝐻!"#) and 𝑟!"# =
log	(1 + 𝑅!"#), following Campbell and Shiller's (1988) decomposition method, the 
present value log price of a CRE property is: 
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(2) 

𝜅 and 𝜌 are parameters derived from linearisation.3 The pricing relation (2) indicates that 
the value of a CRE property is reflecting the expectation of future cash flows and 
expected returns (the required return, or discount rate). High property prices today reflect 
the expectation of high rental growth or low expected returns or both. The rent-to-price 
ratio 𝐻!/𝑃!, known as the cap rate or yield, is analogous to the dividend-price ratio for 
stocks. If we define the log cap rate as 𝑐𝑎𝑝! = ℎ! − 𝑝!, subtracting equation (2) from the 
current log rent, we get: 
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(3) 

One implication of equation (2) is that the cap rate should forecast future excess returns 
(the difference between total return and risk-free rate) or rental growth. If 𝑐𝑎𝑝, 𝑟 and ∆ℎ 
are at their steady-state 𝑐𝑎𝑝, 𝑟, and ∆ℎ. Equation (3) can be expressed as 

𝑐𝑎𝑝 =
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%
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3 In particular, 𝜌 = 1/(1 + exp	(ℎ − 𝑝)), where ℎ − 𝑝 denotes the average log cap rate. 𝜅 is a constant of 
linearisation.  



 
Subtract (4) from (3), we can express the variables in deviations from steady state: 

𝑐𝑎𝑝! − 𝑐𝑎𝑝 = 𝐸! ,-𝜌$[𝑟!"#"$ − 𝑟
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$&'

]4 − 𝐸! ,-𝜌$[∆ℎ!"#"$ − ∆ℎ]
%

$&'

4 

 
 (5) 

Defining the deviation from the steady state as “adjusted”, the implication of equation (5) 
is that the adjusted cap rate should forecast adjusted future excess returns or adjusted 
rental growth. 

 

3. Data 

This study focuses on the three “traditional” commercial property sectors in the UK: 
office, retail, and industrial.4 For each property type, we collect the equivalent yield (as a 
measure of the cap rate), the market rental value index, and total returns from MSCI.5 We 
collect similar information for the regional property types. The data, available from 1987 
at a monthly frequency, was converted to quarterly frequency. The yields of three-month 
Treasury bills and 10-year government bonds are from LSEG Workspace. The 
unemployment rate is from the Office for National Statistics. 

Table 1 shows the characteristics of the cap rate. In this paper, we assume the cap rate is 
rational, meaning it is determined by rational expectations about future returns and rental 
growth. We acknowledge that the cap rate could be considered irrational if that 
underlying expectation is irrational. However, this study does not investigate whether the 
cap rate is driven by rational or irrational expectations. 

The cap rate could be subject to structural breaks. A structural break is a sudden, 
fundamental, and permanent change in the steady state (i.e. the equilibrium cap rate). It is 
not a temporary fluctuation. A structural break in cap rate means that the historical 
relationship between net operating income (rental income) and market value, and the 
factors that influence them, has fundamentally changed. These breaks are typically 
caused by major, lasting shifts in the real estate market or the broader economy that 
permanently alter how investors value commercial property, such as fundamental changes 
in macroeconomic policies or significant sector-specific or technological changes. A 

 
4 We focus on those three property sectors due to the availability of sufficiently long time series data. We 
acknowledge that alternative sectors have grown significantly in importance and now represent a large 
percentage of total capital allocated to UK commercial real estate. 
5 At June 2025, the market value of office, retail and industrial property on the monthly index was shown as 
£4.9billion, 5.2billion and £11billion respectively, making up 86% of the market cap of the properties in the 
index 



structural change in the cap rate typically results in a significant shift in the rate's average 
level, allowing for visual identification.  

To ensure a statistically rigorous and precise determination of the break dates, we first 
focused on adopting the Bai and Perron (1998) test. We also utilised the Pruned Exact 
Linear Time (PELT) algorithm and the Online Cumulative Sum (CUSUM) monitoring 
method. These methods yielded similar structural break dates; the pros and cons of using 
each are discussed in the following context. 

To investigate whether the cap rate is subject to structural breaks, we use the Bai and 
Perron (1998) test. Ideally, we would use an unconstrained version of the test, which 
could determine the number of breaks. For example, we could test the null hypothesis of 
no break against the alternative hypothesis of one or two breaks with unknown break 
dates. However, we only have 37 years of data. In this scenario, the test tends to over-
reject the null hypothesis, which could give an inaccurate measure of the number of 
breaks. Instead, we specify the number of breaks in the Bai and Perron (1998) framework 
and allow it to find the unknown break dates. 

Panel A of Table 1 shows the break dates and the changes of mean log cap rate. For one 
break, the break date for office is Q4 2004 and the mean log cap rate decreased by -0.25 
(196 basis points). The break date for retail is Q3 2003 for the mean log cap rate 
decreased by -0.16 (111 basis points). The break date for industrial is Q3 2014 and the 
mean log cap rate decreased by -0.47 (347 basis points).  

For two breaks, the break dates for office are Q3 2004 and Q3 2014. The mean log cap 
rate decreased by -0.21 (168 basis points) and -0.08 (55 basis points) for those two 
breaks. The break dates for retail are Q2 2002 and Q4 2008. The mean log cap rate 
decreased by -0.25 (171 basis points) for the first break and increased by 0.12 (81 basis 
points) for the second break. The break dates for industrial are Q3 1999 and Q2 2015. 
The mean log cap rate decreased by -0.25 (234 basis points) and -0.37 (253 basis points) 
for those two breaks.  

These results motivate us to construct an adjusted cap rate. However, whether we should 
utilise one or two breaks remains subject to further investigation. In the case of one 
break, we subtract the mean log cap rate from the cap rate. The adjusted cap rate with 
break date 𝜏 is calculated as follows:  

𝑐𝑎𝑝!8= 9𝑐𝑎𝑝! − 𝑐𝑎𝑝#	for	t = 1,… , τ
𝑐𝑎𝑝! − 𝑐𝑎𝑝(	for	t = τ,… , T 

 
 (6) 

where 𝑐𝑎𝑝# is the sample mean of log cap rate before the break and 𝑐𝑎𝑝$ is the sample 
mean of log cap rate after the break. We use the sample means as the estimates of the 
steady states of the cap rate. Similarly, we define the adjusted cap rate in the two breaks 
case.  



Panel B of Table 1 compares some properties of the unadjusted and adjusted cap rates. 
For office, the unadjusted cap rate is nonstationary. However, once structural breaks are 
used to adjust the cap rate, it becomes stationary. The same applies to industrial. For 
retail, the unadjusted cap rate is already stationary and remains so after adjustment. 
Notably, the volatility of the adjusted cap rates is substantially lower than that of the 
unadjusted ones. Most of this decrease in volatility occurs between the "no break" and 
"one break" adjustments. 

Table 1: Characteristics of cap rates 

Panel A    
Property Type Numbers of Breaks Date(s) ∆𝑐𝑎𝑝 
Office 1 Q4 2004 -0.25 
Office 2 Q3 2004, Q3 2014 -0.21,-0.08 
Retail 1 Q3 2003 -0.16 
Retail 2 Q2 2002, Q4 2008 -0.25, 0.12 
Industrial 1 Q3 2014 -0.47 
Industrial 2 Q3 1999, Q2 2015 -0.25, -0.37 
Panel B    
Property Type Numbers of Breaks Stationary Standard Deviation 
Office 0 No 0.17 
Office 1 Yes 0.11 
Office 2 Yes 0.10 
Retail 0 Yes 0.14 
Retail 1 Yes 0.11 
Retail 2 Yes 0.10 
Industrial 0 No 0.26 
Industrial 1 Yes 0.15 
Industrial 2 Yes 0.11 

 

4. Empirical Results 
4.1 In-Sample Regressions 

We run the following in-sample forecasting regressions at 4-, 8-, 12-, 16- and 20-quarter 
horizon: 

𝑦!") = 𝛼 + 𝛽𝑐𝑎𝑝! + 𝜀!") (7) 

where 𝑦 is either log excess return or log rental growth rate. 𝑦!"% = ∑ 𝑦!"&%
&'# . We define 

the difference between total return and risk-free rate, log	(1 + 𝑅!"#) − log	(1 + 𝑅𝐹!), as 
excess return from t to t+1. 𝑅𝐹! is the risk-free rate from t to t+1. The annualised risk-free 
rate is proxied by the yield of a three-month Treasury bill. When h > 1, the standard error 
and the associated t-statistics can be biased due to the use of overlapping observations 
(Goetzmann and Jorion 1993; Nelson and Kim 1993; Jiang et al. 2019). To address this 
issue, we compute bootstrap standard errors using a circular block bootstrap. This method 



resamples the data in blocks of consecutive observations, effectively reproducing serial 
correlation and other dependencies. 

Table 2 reports the in-sample regression results. Using unadjusted cap rate (no break), 
cap rate fails to forecast future excess returns in the short-run (4-quarter). This is 
consistent with the stock market literature that dividend yield has stronger return 
forecasting power for longer horizons (Cochrane, 1992).  

For office properties, at 8-, 12-, 16-, and 20-quarter forecasting horizons, the unadjusted 
cap rate fails to forecast future excess returns. However, when using the adjusted cap rate 
with one break, the t-values increase substantially, and the coefficients become 
significant. The R-squared also shows a substantial increase. For two breaks, the t-values 
decrease and R-squared is only marginally increased compared to the one break case. 
This suggests that the one break model is the best fit for office properties. 

For retail properties, at 8-, 12-, 16-, and 20-quarter forecasting horizons, the unadjusted 
cap rate can forecast future excess returns. However, using the adjusted cap rate with one 
break significantly improves the model, with both the t-values and R-squared increasing. 
For a model with two breaks, both the t-value and R-squared decreased compared to the 
one-break case. This indicates that the one-break model is the best fit for retail properties. 

For industrial properties, at 4-. 8-, 12-, 16- and 20-quarter forecasting horizon, there is no 
evidence that the cap rate can forecast future excess returns when considering no breaks 
or one break. However, once two breaks are considered, the t-values increase 
substantially and the coefficients become significant. The R-squared also shows a 
substantial increase. This suggests that the two-break model is the best fit for industrial 
properties. 

These results formed the initial motivation for our study. Theoretically, the cap rate 
should be able to forecast future returns, yet empirical results have often failed to provide 
supporting evidence. Our findings demonstrate that once structural breaks are considered, 
the adjusted cap rate gains the ability to forecast future excess returns. Furthermore, the 
cap rate for retail properties is stationary and exhibits forecasting power for future excess 
returns even without considering structural breaks. This evidence strongly suggests that 
the inconsistency between theoretical expectations and empirical results stems from the 
nonstationary nature of the cap rate, emphasising the critical need to account for 
structural breaks in forecasting models.  

Given that the cap rate is theoretically expected to forecast excess returns, we use excess 
return as our primary outcome variable. The results for total returns are detailed in the 
Appendix.  

Regarding rental growth, for all three property types, the cap rate only forecasts rental 
growth in the short-run (four quarters) once appropriate breaks are considered. Similar to 



the results for forecasting excess returns, the cap rate can forecast rental growth when 
two breaks are considered for industrial properties. For longer forecasting horizons, the 
cap rate failed to forecast rental growth.  

Table 2: In-sample regression 

Property 
Type 

Horizon Statistics Excess return Rental growth 

   No 
break 

One 
Break 

Two 
Breaks 

No 
break 

One 
Break 

Two 
Breaks 

Office 4 Coefficient 0.05 0.17 0.16 -0.15 -0.36 -0.40 
  t-value 0.42 1.04 0.76 -1.48 -2.63 -2.87 
  R2 0.53 2.10 1.72 10.61 23.69 25.69 
Office 8 Coefficient 0.29 0.83 0.93 -0.19 -0.40 -0.46 
  t-value 1.12 2.94 2.74 -1.01 -1.52 -1.53 
  R2 5.46 17.74 18.98 5.17 9.27 10.49 
Office 12 Coefficient 0.39 1.17 1.34 -0.15 -0.22 -0.24 
  t-value 1.29 3.22 3.15 -0.65 -0.73 -0.66 
  R2 7.08 25.53 28.31 2.11 1.83 1.84 
Office 16 Coefficient 0.41 1.39 1.50 -0.10 -0.01 0.01 
  t-value 1.31 3.25 2.92 -0.43 -0.04 0.01 
  R2 6.42 29.78 29.80 0.77 0.01 0.00 
Office 20 Coefficient 0.44 1.75 1.78 -0.05 0.25 0.27 
  t-value 1.39 3.88 3.26 -0.22 0.85 0.76 
  R2 6.13 40.93 36.72 0.17 1.93 1.92 
Retail 4 Coefficient 0.21 0.30 0.28 -0.05 -0.24 -0.23 
  t-value 1.49 2.18 2.23 -0.77 -2.61 -2.16 
  R2 6.93 8.81 6.69 2.08 28.56 22.31 
Retail 8 Coefficient 0.60 0.88 0.88 -0.01 -0.32 -0.29 
  t-value 2.38 3.68 3.50 -0.06 -1.80 -1.48 
  R2 22.42 29.82 26.19 0.02 15.82 11.64 
Retail 12 Coefficient 0.85 1.19 1.17 0.11 -0.26 -0.22 
  t-value 3.03 4.23 4.14 0.60 -1.12 -0.85 
  R2 32.25 40.05 33.94 1.80 6.35 4.03 
Retail 16 Coefficient 1.00 1.29 1.19 0.27 -0.14 -0.09 
  t-value 3.49 4.77 4.86 1.27 -0.53 -0.30 
  R2 37.95 40.23 29.71 8.11 1.29 0.45 
Retail 20 Coefficient 1.11 1.40 1.17 0.45 0.02 0.07 
  t-value 3.80 4.91 3.40 1.91 0.08 0.23 
  R2 42.87 41.66 26.01 18.36 0.03 0.23 
Industrial 4 Coefficient 0.02 0.23 0.41 -0.06 -0.03 -0.15 
  t-value 0.24 1.45 2.79 -1.35 -0.35 -1.67 
  R2 0.27 8.28 13.87 7.33 0.69 8.64 
Industrial 8 Coefficient 0.06 0.47 0.97 -0.11 -0.03 -0.21 
  t-value 0.31 1.65 3.74 -1.29 -0.16 -1.31 
  R2 0.65 15.45 33.54 7.08 0.17 5.02 
Industrial 12 Coefficient -0.05 0.49 1.15 -0.16 0.01 -0.17 
  t-value -0.20 1.25 3.37 -1.36 0.06 -0.73 
  R2 0.32 11.91 32.82 8.16 0.03 1.74 



Industrial 16 Coefficient -0.16 0.45 1.23 -0.20 0.08 -0.01 
  t-value -0.49 0.91 3.12 -1.28 0.28 -0.05 
  R2 2.07 7.57 27.10 8.69 0.67 0.01 
Industrial 20 Coefficient -0.17 0.44 1.33 -0.22 0.12 0.11 
  t-value -0.46 0.83 3.71 -1.23 0.41 0.43 
  R2 1.84 5.97 25.42 9.79 1.40 0.60 

 

Given that the in-sample regression results show that one break is optimal for office and 
retail and two breaks are optimal for industrial, we plot the cap rates for comparison in 
Figure 1. In the left panels, we plot log cap rate alongside the mean log cap rate. Visually, 
we observe evidence of nonstationary. Cap rates are decreasing, particularly for industrial 
property. The right panel compares unadjusted cap rate and adjusted cap rate. Once the 
cap rate is adjusted, the series become stationary.  

Figure 1: Cap rates with structural breaks 

Office with one break Office with one break 

  
Retail with one break Retail with one break 

  



Industrial with two breaks Industrial with two breaks 

  
 

Based on the theoretical framework, a break in 𝑐𝑎𝑝 (average cap rate) must be associated 
with a change in 𝑟 (average total return) or in ∆ℎ (average rental growth rate). First, we 
assume that ∆ℎ is constant and focus on changes in expected total returns. The change in 
𝑟 implied by the change in 𝐶𝑎𝑝 can be inferred from 𝑟! = <1 + ∆ℎ= exp(𝑐𝑎𝑝!) + ∆ℎ. 
Second, we assume 𝑟 is constant and focus on changes in expected rental growth rate. 
The change in ∆ℎ implied by change in 𝐶𝑎𝑝 can be inferred from ∆ℎ! = (𝑟 −
exp(𝑐𝑎𝑝!)	)/(1 + exp(𝑐𝑎𝑝!)).6  

Table 3 reports the results. For office properties, the observed change in 𝑐𝑎𝑝 implies a 
decline in mean expected total returns of 2.00%, or an increase in mean expected rental 
growth rate of 1.84%. Although we observed a decline in total returns, this is mainly 
contributed by the decline of the risk-free rate: the excess return has actually increased. 
Similarly, the rental growth rate has decreased.  

For retail properties, the observed change in 𝑐𝑎𝑝 implies a decline in mean expected total 
returns of 1.16%, or an increase in mean expected rental growth rate of 1.06%. As with 
office properties, the observed decline in total returns is largely attributable to a fall in the 
risk-free rate (excess returns have increased) and rental growth falls.  

Industrial properties show more complex results. For the first break, the observed change 
in 𝑐𝑎𝑝 implies a decline in mean expected total returns of 2.41%, or an increase in mean 
expected rental growth rate of 2.21%. A decline in total returns was observed, largely due 
to the falling risk-free rate, while excess returns increased. The rental growth rate, 
however, decreased. After the second break, the observed change in 𝑐𝑎𝑝 implies a decline 
in mean expected total returns of 2.55%, or an increase in mean expected rental growth 

 
6 The proofs are in Appendix E. 



rate of 2.40%. Although the risk-free rate had declined, excess returns increased 
substantially. Notably, the rental growth rate increased by 4.58%, which is a significantly 
higher rise than the implied rate. This may be a short to medium term adjustment before it 
normalises but has led to a period of higher returns.7 

Based on the results reported in Table 3, we can conclude that the decline of 𝑐𝑎𝑝 for 
office, retail and the first break of industrial properties is mainly driven by the decline in 
the risk-free rate. The decline of 𝑐𝑎𝑝 for the second break in industrial markets is mainly 
driven by increase in rental growth, which may be due to a structural change in the 
demand for industrial (logistics) properties. 

Table 3: Implied changes in mean expected returns and rental growth 

 Office 
Break 1 

Retail 
Break 1 

Industrial 
Break 1 

Industrial 
Break 2 

Change in 𝐶𝑎𝑝 -0.25 -0.16 -0.25 -0.37 
Implied changes     
Implied change in expected 
total returns 

-2.00% -1.16% -2.41% -2.55% 

Implied change in rental 
growth 

1.84% 1.06% 2.21% 2.40% 

Actual changes     
Actual change in total return -4.72% -5.94% -4.30% 1.59% 
Actual change in excess 
return 

0.83% -0.25% 1.15% 3.35% 

Actual change in risk-free rate -5.54% -5.49% -5.49% -1.59% 
Actual change in rental 
growth 

-0.18% -5.00% -2.32% 4.58% 

 
4.2 Out-of-sample predictability  

For the in-sample predictability analysis, we constructed adjusted cap rate based on the 
entire data sample. In this section, we investigate whether an investor, forming an 
adjusted cap rate in real time, would be able to predict out-of-sample returns. We focus 
on forecasting for a three-year horizon in this section (results of the five-year horizon are 
reported in Appendix F). Given the illiquidity and high transaction cost associated with 
CRE, a shorter time forecasting horizon would not be of practical benefit to investors. At 
any given time period t, we run the following regression of future cumulative excess 
return on cap rate using the training dataset: 

𝐸𝑅!") = 𝛼 + 𝛽𝑐𝑎𝑝! + 𝜀!") (8) 

 
7 We note our earlier comment that sentiment rather than rationality may play a role in short run market 
performance.  



To ensure that we do not use future information in our predictions, all of the variables in 
our training dataset stop one quarter before the start of the forecasting period. For 
example, as demonstrated in Figure 2, if we are forecasting the cumulative excess return 
from Q1 2004 to Q4 2006, the variables in our training dataset would end at Q4 2000. 
Once the parameters of our forecasting model are estimated, we then use the cap rate in 
Q4 2003 as our input for the estimated model to forecast the cumulative excess return 
from Q1 2004 to Q4 2006. 

Figure 2: Forecasting method 

 

We start with 72 quarters of data, then we use recursive estimation with an expanding 
window. For every run, we add an extra quarter of information to re-estimate equation 
(8), and the forecast date moves one quarter later.  During the whole process, we do not 
use information beyond the point of the forecasting date.  

To evaluate the forecasting power of adjusted cap rate, we use several benchmarks. The 
first benchmark employs the historical average excess return for forecasting. The second 
uses the unadjusted cap rate. In real time forecasting, an investor faces two main 
challenges. First, they must estimate the timing of a break. Second, if a new break is 
detected, they have to estimate the new mean after the break occurs. If this new break 
happens toward the end of the sample available to the investor, the new mean can only be 
estimated using a small number of observations, which leads to significant estimation 
uncertainty. To investigate which of these issues is responsible for the deterioration of 
out-of-sample forecasting power, we consider two additional cases. In the first case, the 
investor knows the break dates and the ex-post mean value of the cap rate.8 In the second 
case, the investor does not know the break dates but knows the ex-post mean value of the 

 
8 Although the break dates and ex-post mean are estimated using the full sample, the model estimation itself 
uses only the historical information available at any given point in time. 



cap rate. In essence, we provide the investor with information about break dates and 
means from the entire sample. While these are not pure out-of-sample tests, they establish 
an informative benchmark for analysing the pure out-of-sample forecasts. 

To evaluate the performance of out-of-sample forecasts, we use two standard metrics: 
mean absolute error (MAE) and root mean-squared forecasting error (RMSE). These are 
calculated as follows: 

𝑀𝐴𝐸 =	
1
𝑛
-|𝑦* − 𝑦+L|
,

*&#

 (9) 

𝑅𝑀𝑆𝐸 =	N
1
𝑛
-(𝑦* − 𝑦+L)(
,

*&#

 (10) 

where 𝑦& represents the actual value, 𝑦(A  is the predicted value, and n is the number of data 
points. MAE calculates the absolute difference between actual and predicted values, thus 
it assigns equal weights to all errors. However, RMSE penalises large errors more 
heavily, due to the squaring effect.  

Based on Figure 1, the cap rates across the three property sectors exhibit distinct 
characteristics. The office cap rate is not stationary and shows a moderate downward shift 
over time. In contrast, the retail cap rate appears stationary, though it shifts slightly 
downwards over time. The industrial cap rate, however, is non-stationary and 
demonstrates a massive downward shift. These differing time series characteristics 
provide a valuable opportunity to test the forecasting power of adjusted cap rates within 
each unique scenario. 

Table 4 presents the out-of-sample forecasting errors, with Panel A, B, and C reporting 
the results for office, retail, and industrial properties, respectively. Comparing the first 
two rows of each panel, the historical average forecast generally performs better than 
using the unadjusted cap rate, with the exception of retail properties. As previously 
discussed, this is attributable to the nonstationary nature of the cap rate for office and 
industrial properties. The third row of each panel reports results for "Pseudo OOS Case 
1," where the investor knows the break dates and the ex-post mean cap rate. In this 
scenario, the errors are substantially lower than those from historical average forecasting. 
Notably, the forecasting errors from using the adjusted cap rate are significantly lower 
than those from using the unadjusted cap rate. This provides strong evidence that the 
forecasting power of the cap rate increases significantly once structural breaks are 
considered. 

A key challenge for return predictability lies in how quickly a model can identify breaks 
in real time; significant delays in detection can severely hinder forecasting performance.  



Table 4: Out-of-sample forecasting error 

Panel A: Office    
 Forecasting 

variable 
Mean 
absolute 
error 

Root mean-
squared error 

Benchmark 1 Historical 
average 

0.2248 
 

0.2738 
 

Benchmark 2 Cap rate 0.2578 0.3013 
Pseudo OOS case 1: Know break dates 
and ex post mean cap rate 

Adjusted cap 
rate 

0.1931 
 

0.2154 
 

Pseudo OOS case 2: OSS estimate break 
dates, but know ex post mean cap rate 

Adjusted cap 
rate 

0.1987 
 

0.2215 
 

Pure OOS: OSS estimate break dates and 
mean cap rate 

Adjusted cap 
rate 

0.2025 
 

0.2367 
 

Panel B: Retail    
Benchmark 1 Historical 

average 
0.1718 
 

0.2343 
 

Benchmark 2 Cap rate 0.1451 0.1671 
Pseudo OOS case 1: Know break dates 
and ex post mean cap rate 

Adjusted cap 
rate 

0.1344 
 

0.1576 
 

Pseudo OOS case 2: OSS estimate break 
dates, but know ex post mean cap rate 

Adjusted cap 
rate 

0.1276 
 

0.1505 
 

Pure OOS: OSS estimate break dates and 
mean cap rate 

Adjusted cap 
rate 

0.1342 
 

0.1545 
 

Panel C: Industrial    
Benchmark 1 Historical 

average 
0.2360 
 

0.2727 
 

Benchmark 2 Cap rate 0.3140 
 

0.3501 
 

Pseudo OOS case 1: Know break dates 
and ex post mean cap rate 

Adjusted cap 
rate 

0.1517 
 

0.2056 
 

Pseudo OOS case 2: OSS estimate break 
dates, but know ex post mean cap rate 

Adjusted cap 
rate 

0.1970 
 

0.2761 
 

Pure OOS: OSS estimate break dates and 
mean cap rate 

Adjusted cap 
rate 

0.2791 
 

0.3532 
 

 

To explore this, Figures 3, 4, and 5 plot the break dates estimated in real time for office, 
retail, and industrial properties, respectively. The real time breakpoint detection works as 
follows: the initial model is estimated using the first 15 years of data. Then, the 
estimation window expands by one quarter at a time, and the model is re-estimated until 
it reaches the end of the sample, recording the break dates identified at each step. In the 
figures, the vertical line marks the first period at which the model is estimated, based on 
the initial 15-year training window (60 quarterly observations). The 45-degree line 
represents points where a break could be detected with zero delay. Black dots on the 
graph mark the break dates estimated in real time. The x-axis shows the estimation date, 
and the y-axis shows the estimated break dates. For example, if the estimation date is Q4 



2006 and a structural break is detected in Q2 2004, we plot a black dot with an x-value of 
Q4 2006 and a y-value of Q2 2004. Once the first break is detected, we do not allow a 
second break within 10 years. We impose this constraint because commercial real estate 
cycles typically range from 9 to 20 years (Barras, 1994), and a new break within 10 years 
of the first might indicate a false alarm. 

For office properties, the estimated break occurred in Q2 2004, with a detection date of 
Q4 2006, resulting in a 9-quarter delay. For retail, the estimated break was in Q2 2004, 
detected in Q3 2006, marking an 8-quarter delay. Industrial properties experienced two 
estimated breaks. The first, in Q1 1998, was detected in Q3 2002, leading to a 17-quarter 
delay. The second estimated break, in Q2 2014, was detected in Q3 2016, representing an 
8-quarter delay. Overall, breaks were generally detected with minimal delay, with the 
notable exception of the first break in industrial property. 

For real time break detection, we adopted the PELT algorithm, introduced by Killick et 
al. (2012). It is an efficient method for identifying multiple structural breaks within a time 
series. The benefit of choosing this algorithm is that we do not need to specify the 
number of breaks. PELT aims to find the optimal segmentation of a time series by 
minimising a penalised cost function. Thus, it automatically determines the number of 
breaks once the cost function is defined. 

 

Figure 3: Recursively estimated break dates for office property 

 
Note: The x-axis shows the estimation date (using historical information up to the estimation date). Black dots on the 
graph mark the break dates estimated.  



Figure 4: Recursively estimated break dates for retail property 

 
Note: The x-axis shows the estimation date (using historical information up to the estimation date). Black dots on the 
graph mark the break dates estimated.  

 

Figure 5: Recursively estimated break dates for industrial property 

 
Note: The x-axis shows the estimation date (using historical information up to the estimation date). Black dots on the 
graph mark the break dates estimated.  



Alternatively, we could use the Bai and Perron (1998) test, which we utilised in our full-
sample analysis. However, using this test with real time subsamples presents two primary 
challenges. First, as previously discussed regarding small sample sizes, this test is 
unreliable for determining the number of breaks: we need to specify the number of 
structural breaks ex-ante. For instance, if we consistently specified only one break, as 
with industrial properties, we would fail to identify the presence of two distinct breaks. 
Even if we define one break and use the first detected break as the primary, with 
subsequent shifts indicating a second, a second problem arises: in the case of industrial 
properties, the detection of the second break exhibits a significant time delay. The results 
of using the Bai and Perron (1998) test are plotted in Appendix C. We have specified one 
break, thus it always gives a break date for any subsample. For office properties, the 
initial break date is Q2 1990, with the break shifting to Q2 2004, detected with a five-
quarter delay. For retail, the initial break is Q4 1989, shifting to Q3 2003, detected with a 
seven-quarter delay. For industrial, the initial break is Q4 1997, shifting to Q2 2014 with 
a substantial 28-quarter delay. Generally, this method can detect the first major break 
without significant delay, but the second break for industrial property shows a significant 
delay. 

We also considered the CUSUM monitoring method, which is capable of detecting shifts 
in the mean in real time.9 As shown in the Appendix D, using the first 10 years as the 
training set to establish target values, this method could detect breaks within a four-
quarter delay for all three property types. However, a limitation of CUSUM is that it is 
not designed to detect multiple breaks. One potential avenue for improvement could 
involve combining all these individual models through an ensemble approach. 

Once we defined the process for detecting breaks in real time, we performed an exercise 
for "Pseudo OOS Case 2". In this scenario, the investor estimates the break dates in real 
time but knows the ex-post mean cap rate. The results, reported in the fourth row of each 
panel, show that the adjusted cap rate still outperforms both the historical average 
forecasting and unadjusted cap rate forecasting. Given that we can detect breaks in real 
time without significant delay and the superior forecasting power compared to these two 
benchmark models, it appears that detecting breaks is not a major factor that would 
deteriorate forecasting performance. 

Next, we conducted a pure out-of-sample analysis, where the investor estimates both the 
break dates and the ex-post mean in real time. Although we can detect breaks with 
minimal delay, we encounter another challenge: estimating the ex-post mean value is 
difficult due to the limited number of data points available immediately after a break. To 

 
9 The Online CUSUM monitoring method is a highly effective statistical process control technique used for 
online change detection—meaning it monitors a stream of data in real-time to quickly and sensitively detect 
a small, persistent shift in the mean of a process variable. 
 



address this, we defined a transition period of five years following a break. Within this 
period, we determine the mean value of the cap rate by running a regression of the cap 
rate on a few state variables at each period. In Table 3, we show that the structural breaks 
in the cap rate for office and retail properties are mainly due to changes in the risk-free 
rate. Therefore, we use the term structure of interest rates and the unemployment rate to 
capture shifts in the economy’s steady state and to form expectations about future interest 
rates. The term structure of interest rates is defined as the yield difference between the 
three-month Treasury bill and the 10-year government bond. For industrial properties, we 
add the annual changes of internet sales to total retail sales ratio, which could capture the 
demand for industrial properties. We then use the average of the predicted cap rate from 
the break point to the last observed data point as the mean cap rate. After this five-year 
transition period, we revert to using a simple average of the cap rate from the break point 
to the last observed data point. 

The fifth row of each panel presents the results of the pure out-of-sample forecasting. For 
both office and retail properties, the adjusted cap rate forecasts continue to outperform 
both the historical average and unadjusted cap rate forecasts. However, for industrial 
properties, while the adjusted cap rate forecast still performs better than the unadjusted 
cap rate forecast, it falls short of the historical average forecast. Interestingly, the pure 
out-of-sample forecasting for retail is marginally superior to "Pseudo OOS Case 1". One 
of the reasons is that the real time detected structural break is slightly different from the 
break estimated using full sample (although only three quarters apart). These results 
suggest that if the cap rate is stationary, knowing the precise break date and ex-post mean 
cap rate might not be crucial. For office properties, which exhibit a modest shift in mean 
cap rate over time, the real time estimation still performs well. Conversely, for industrial 
properties, characterised by a substantial shift in mean cap rate over time, particularly 
with two breaks, the adjusted cap rate forecast is less accurate than the forecast using 
historical average, though it remains superior to the unadjusted cap rate forecast in terms 
of mean absolute error. Based on this analysis, it appears that the difficulty in accurately 
estimating the ex-post mean is the primary factor contributing to the increase in 
prediction errors in the pure out-of-sample scenario. The results for the five-year 
forecasting horizon show similar patterns and are reported in Appendix F.  

The same pure out-of-sample forecasting process was applied to the property index at 
regional level in England. We only included indices with a full set of information as in 
the national index. This left us with 19 regional indices. For these regional studies, 
unemployment was defined as the unemployment rate specific to that region.  

Table 5 presents the results. For offices, the adjusted cap rate forecasts better than the 
historical average, with the exception of London office. For retail, the adjusted cap rate 
outperforms the historical average. For industrial properties, the adjusted cap rate 
forecasts worse than the historical average. Across all regional results, except for some 



retail segments, the adjusted cap rate consistently forecasts better than the unadjusted cap 
rate.10 This underscores the necessity of adjusting for structural breaks when using cap 
rates for forecasting. However, the challenge of accurately estimating the ex-post mean 
remains a persistent problem. The results for the five-year forecasting horizon show 
similar patterns and are reported in Appendix F. 

Table 5: Regional out-of-sample forecasting error  

Panel 1: London Retail 
 Forecasting variable Mean absolute error Root mean-squared error 
Benchmark 1 Historical average 0.2029 0.2403 
Benchmark 2 Cap rate 0.2117 0.2692 
Pure OOS Adjusted cap rate 0.1644 0.2048 

Panel 2: London Office 
Benchmark 1 Historical average 0.2410 0.2930 
Benchmark 2 Cap rate 0.2877 0.3570 
Pure OOS Adjusted cap rate 0.2548 0.2949 

Panel 3: London Industrial 
Benchmark 1 Historical average 0.2533 0.2855 
Benchmark 2 Cap rate 0.3274 0.3642 
Pure OOS Adjusted cap rate 0.2958 0.3654 

Panel 4: South East – Retail 
Benchmark 1 Historical average 0.1779 0.2358 
Benchmark 2 Cap rate 0.1735 0.2074 
Pure OOS Adjusted cap rate 0.1475 0.1832 

Panel 5: South East – Office 
Benchmark 1 Historical average 0.2429 0.2949 
Benchmark 2 Cap rate 0.2156 0.2602 
Pure OOS Adjusted cap rate 0.1875 0.2303 

Panel 6: South East – Industrial 
Benchmark 1 Historical average 0.2445 0.2827 
Benchmark 2 Cap rate 0.3269 0.3712 
Pure OOS Adjusted cap rate 0.2777 0.3379 

Panel 7: South West – Retail 
Benchmark 1 Historical average 0.1718 0.2296 
Benchmark 2 Cap rate 0.1301 0.1480 
Pure OOS Adjusted cap rate 0.1499 0.1857 

Panel 8: South West – Office 
Benchmark 1 Historical average 0.2311 0.2815 
Benchmark 2 Cap rate 0.2357 0.2860 
Pure OOS Adjusted cap rate 0.2302 0.2643 

Panel 9: South West – Industrial 
Benchmark 1 Historical average 0.1989 0.2460 
Benchmark 2 Cap rate 0.2530 0.2885 
Pure OOS Adjusted cap rate 0.2093 0.2505 

Panel 10: Eastern – Retail 

 
10 The cap rate for the retail sector tends to be stationary, and in this case, it may not be necessary to adjust it. 



Benchmark 1 Historical average 0.1784 0.2488 
Benchmark 2 Cap rate 0.1751 0.2099 
Pure OOS Adjusted cap rate 0.1472 0.1759 

Panel 11: Eastern – Office 
Benchmark 1 Historical average 0.2330 0.2687 
Benchmark 2 Cap rate 0.2246 0.2761 
Pure OOS Adjusted cap rate 0.2062 0.2411 

Panel 12: Eastern – Industrial 
Benchmark 1 Historical average 0.2633 0.2973 
Benchmark 2 Cap rate 0.3316 0.3751 
Pure OOS Adjusted cap rate 0.3230 0.4048 

Panel 13: East Midlands – Retail 
Benchmark 1 Historical average 0.1620 0.2334 
Benchmark 2 Cap rate 0.1533 0.2078 
Pure OOS Adjusted cap rate 0.1417 0.2042 

Panel 14: East Midlands – Industrial 
Benchmark 1 Historical average 0.2057 0.2470 
Benchmark 2 Cap rate 0.2704 0.3013 
Pure OOS Adjusted cap rate 0.2373 0.2885 

Panel 15: West Midlands – Retail 
Benchmark 1 Historical average 0.1788 0.2409 
Benchmark 2 Cap rate 0.1296 0.1556 
Pure OOS Adjusted cap rate 0.1382 0.1715 

Panel 16: North West – Retail 
Benchmark 1 Historical average 0.1592 0.2326 
Benchmark 2 Cap rate 0.1329 0.1570 
Pure OOS Adjusted cap rate 0.1326 0.1625 

Panel 17: Yorks & Humber – Retail 
Benchmark 1 Historical average 0.1961 0.2753 
Benchmark 2 Cap rate 0.1425 0.1718 
Pure OOS Adjusted cap rate 0.1971 0.2372 

Panel 18: Yorks & Humber – Industrial 
Benchmark 1 Historical average 0.2070 0.2702 
Benchmark 2 Cap rate 0.2582 0.3184 
Pure OOS Adjusted cap rate 0.2074 0.2484 

 

5. Investment Implications 

We first tested whether the cap rate could serve as an early warning indicator for the 
significant market downturn during the 2007-2009 Global Financial Crisis (GFC). To 
forecast these three years, we used information available until the end of 2006, 
specifically utilising the Q4 2006 cap rate to predict the cumulative excess return over the 
subsequent three years. 

Table 6 presents these results. For both office and retail properties, the cap rate and the 
adjusted cap rate successfully forecasted at the end of 2006 a market downturn in 
subsequent years. However, given that the breaks for these sectors occurred in 2004, the 



estimated adjusted cap rate forecasts are subject to uncertainty due to the limited 
information available before 2006. 

Industrial property provides a strong opportunity for this test, as its break occurred 
earlier, in 1998. For industrial, the unadjusted cap rate forecast was +16%, while the 
adjusted cap rate forecast was -31%. The actual cumulative excess return was -36%. 
Notably, all cap rate forecasts, both unadjusted and adjusted, outperformed the historical 
average forecasting method. 

Table 6: Forecasting of cumulative excess return during 2007-2009 

 Office Retail Industrial 
Actual excess return -42% -45% -36% 
Historical average 
forecast 

9% 12% 39% 

Cap rate forecast -46% -22% 16% 
Adjusted cap rate 
forecast 

-35% -13% -31% 

 

Next, we investigated whether the cap rate can be used for cross-sectional asset selection. 
To ensure a sufficient number of cross-sections, we utilised the regional property data. 
Given the mixed results from pure out-of-sample forecasting across different property 
types and regions, and the difficulty in accurately estimating the ex-post mean cap rate, 
we employed the actual break dates and historical means for this demonstration. This 
approach allows us to clearly illustrate the adjusted cap rate's performance in asset 
ranking. 

For this analysis, we sorted all regional properties into quartiles based on either their 
unadjusted cap rate or adjusted cap rate. These portfolios were rebalanced every three 
years, and we tracked the equally weighted portfolio excess returns over a 21-year 
period.11 We report the cumulative excess returns for each portfolio, alongside the 
cumulative excess return achieved by an equally weighted investment in all regional 
properties. 

Table 7 presents these results. As we rebalance the portfolio every three years, we used 
three different starting years: 2001, 2002, and 2003. When using the unadjusted cap rate 
to rank and form portfolios, higher cap rate portfolios did not outperform lower cap rate 
portfolios. This contradicts the theory that higher cap rates should correspond to higher 
excess returns. However, once we used the adjusted cap rate to sort portfolios, a notable 
pattern emerged: higher adjusted cap rate portfolios consistently outperformed lower 
adjusted cap rate portfolios. Furthermore, the excess return of Portfolio 1 (highest 
adjusted cap rate) was better than an equally weighted investment across all regional 

 
11 Transaction costs are not included. 



properties. We have also tried rebalancing the portfolio every five years; the patterns are 
similar.  

Table 7: Cumulative excess returns of cap rate sorted portfolios using regional 
properties 

 Portfolios 
Starting in 2001 1 2 3 4 Equally weighted all 
Cap rate 93% 57% 105% 97% 89% 
Adjusted cap rate 128% 93% 73% 58% 89% 
Starting in 2002      
Cap rate 98% 50% 46% 101% 76% 
Adjusted cap rate 133% 68% 62% 37% 76% 
Starting in 2003      
Cap rate 62% 90% 40% 88% 70% 
Adjusted cap rate 88% 83% 67% 45% 70% 

 

6. Conclusion  

This study addressed the inconsistent predictive power of cap rates in CRE. We found 
that structural breaks in the steady-state mean of cap rates are a key source of this 
forecast instability. Our core contribution is the development and application of an 
adjusted cap rate, defined as the deviation from this dynamic steady-state mean. This 
adjustment significantly enhanced in-sample forecasting power, enabling strong 
prediction of excess returns for UK office, retail, and industrial properties 

Despite the challenges of estimating post-break mean changes in real time, the adjusted 
cap rate crucially outperformed both a random walk model and the unadjusted cap rate in 
out-of-sample forecasting for office and retail sectors. These findings highlight the 
importance of recognising that cap rates are prone to structural breaks and advocate for 
using the adjusted cap rate in CRE forecasting and asset selection. Future research should 
focus on developing better methods for detecting structural breaks and estimating the new 
steady-state mean in real time. 

  



Appendix A: In-sample estimation of total return 

Property Type Horizon Statistics Total return 
   No break One Break Two Breaks 
Office 4 Coefficient 0.15 0.12 0.10 
  t-value 1.38 0.77 0.49 
  R2 4.66 1.20 0.74 
Office 8 Coefficient 0.47 0.70 0.78 
  t-value 2.18 2.88 2.42 
  R2 17.03 14.83 15.26 
Office 12 Coefficient 0.67 1.01 1.15 
  t-value 2.75 3.67 3.47 
  R2 26.60 23.59 26.01 
Office 16 Coefficient 0.80 1.19 1.30 
  t-value 3.31 4.06 3.93 
  R2 33.76 30.78 31.31 
Office 20 Coefficient 0.92 1.53 1.59 
  t-value 4.01 5.11 4.53 
  R2 40.23 46.64 43.40 
Retail 4 Coefficient 0.29 0.23 0.25 
  t-value 2.43 1.60 1.72 
  R2 13.27 5.70 5.65 
Retail 8 Coefficient 0.73 0.72 0.78 
  t-value 3.63 2.63 2.76 
  R2 34.93 21.21 21.91 
Retail 12 Coefficient 1.05 0.97 1.03 
  t-value 4.77 2.77 3.03 
  R2 51.27 27.94 27.35 
Retail 16 Coefficient 1.28 1.07 1.05 
  t-value 5.45 3.18 3.51 
  R2 61.49 26.80 22.53 
Retail 20 Coefficient 1.50 1.20 1.06 
  t-value 5.43 3.59 2.83 
  R2 68.07 26.63 18.41 
Industrial 4 Coefficient 0.11 0.30 0.37 
  t-value 1.26 2.13 2.47 
  R2 5.78 16.29 12.85 
Industrial 8 Coefficient 0.22 0.62 0.88 
  t-value 1.35 2.53 3.31 
  R2 10.81 31.18 33.00 
Industrial 12 Coefficient 0.22 0.74 1.04 
  t-value 0.99 2.41 2.90 
  R2 8.04 36.09 35.84 
Industrial 16 Coefficient 0.24 0.80 1.12 
  t-value 0.86 2.19 2.65 
  R2 6.99 36.41 33.46 
Industrial 20 Coefficient 0.32 0.90 1.26 
  t-value 1.01 2.29 3.16 
  R2 9.72 37.74 34.97 



Appendix B: Out-of-sample forecasting error of total return 

Panel A: Office 
 Forecasting 

variable 
Mean 
absolute 
error 

Root mean-
squared error 

Benchmark 1 Historical 
average 

0.2111 
 

0.2767 
 

Benchmark 2 Cap rate 0.2022 0.2283 
Pseudo OOS case 1: Know break dates 
and ex post mean cap rate 

Adjusted cap 
rate 

0.1858 
 

0.2261 
 

Pseudo OOS case 2: OSS estimate break 
dates, but know ex post mean cap rate 

Adjusted cap 
rate 

0.1848 
 

0.2234 
 

Pure OOS: OSS estimate break dates and 
mean cap rate 

Adjusted cap 
rate 

0.1793 
 

0.2329 
 

Panel B: Retail 
Benchmark 1 Historical 

average 
0.2112 
 

0.2864 
 

Benchmark 2 Cap rate 0.1513 
 

0.2001 
 

Pseudo OOS case 1: Know break dates 
and ex post mean cap rate 

Adjusted cap 
rate 

0.1552 
 

0.2036 
 

Pseudo OOS case 2: OSS estimate break 
dates, but know ex post mean cap rate 

Adjusted cap 
rate 

0.1569 
 

0.2125 
 

Pure OOS: OSS estimate break dates and 
mean cap rate 

Adjusted cap 
rate 

0.2393 
 

0.2939 
 

Panel C: Industrial 
Benchmark 1 Historical 

average 
0.1853 
 

0.2577 
 

Benchmark 2 Cap rate 0.2703 
 

0.3152 
 

Pseudo OOS case 1: Know break dates 
and ex post mean cap rate 

Adjusted cap 
rate 

0.1726 
 

0.2161 
 

Pseudo OOS case 2: OSS estimate break 
dates, but know ex post mean cap rate 

Adjusted cap 
rate 

0.2032 
 

0.2482 
 

Pure OOS: OSS estimate break dates and 
mean cap rate 

Adjusted cap 
rate 

0.2188 
 

0.2506 
 

 

 

 

 

  



Appendix C: Recursively estimated break dates using the Bai and Perron (1998) test 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



Appendix D: Online CUSUM monitoring for cap rates 

 

 



 

  



Appendix E: Model for implied changes in total return and rental growth 

Based on equation (1), the total return can be also defined as  

 

1 + 𝑅!"# =
𝑃!"# +𝐻!"#

𝑃!
=
𝐻!"#
𝐻!

1 + 𝑃!"#/𝐻!"#
𝑃!/𝐻!

 

 
(E1) 

As of period t, the steady-state growth rate of rent is ∆𝐻! and steady-state of expected 
total returns are 𝑅!, implying a steady state for the cap rate: 

 

𝐶𝐴𝑃𝑡 =
𝑅𝑡 − ∆𝐻𝑡
∆𝐻𝑡

 

 

(E2) 

Take log on both sides: 

 

log	(𝐶𝐴𝑃!) = 𝑙𝑜𝑔
𝑅! − ∆𝐻!
∆𝐻!

 (E3) 

Simplify, we get 

 
𝑐𝑎𝑝𝑡 = log<exp(𝑟𝑡) − exp<∆ℎ𝑡== − ∆ℎ𝑡 

 
(E4) 

Take exponentials on both sides: 

 

exp(𝑐𝑎𝑝!) =
exp(𝑟!) − expX∆ℎ!Y

expX∆ℎ!Y
 (E5) 

Given that 𝑟! and ∆ℎ! are smaller than 1, we can approximate equation (E4) 

 

exp(𝑐𝑎𝑝!) =
1 + 𝑟! − (1 + ∆ℎ!)

1 + ∆ℎ!
=
𝑟! − ∆ℎ!
1 + ∆ℎ!

 (E6) 

 

  



Appendix F: Out-of-sample forecasting error for five-year forecasting horizon 

Table F1: Out-of-sample forecasting error with five-year forecasting horizon 

Panel A: Office    
 Forecasting 

variable 
Mean 
absolute 
error 

Root mean-
squared error 

Benchmark 1 Historical 
average 

0.3226 0.3697 

Benchmark 2 Cap rate 0.4611 0.4994 
Pseudo OOS case 1: Know break dates 
and ex post mean cap rate 

Adjusted cap 
rate 

0.2298 0.2595 

Pseudo OOS case 2: OSS estimate break 
dates, but know ex post mean cap rate 

Adjusted cap 
rate 

0.2327 0.2619 

Pure OOS: OSS estimate break dates and 
mean cap rate 

Adjusted cap 
rate 

0.3077 0.3305 

Panel B: Retail    
Benchmark 1 Historical 

average 
0.2231 0.2449 

Benchmark 2 Cap rate 0.1413 0.1792 
Pseudo OOS case 1: Know break dates 
and ex post mean cap rate 

Adjusted cap 
rate 

0.1156 0.1266 

Pseudo OOS case 2: OSS estimate break 
dates, but know ex post mean cap rate 

Adjusted cap 
rate 

0.1120 0.1259 

Pure OOS: OSS estimate break dates and 
mean cap rate 

Adjusted cap 
rate 

0.1082 0.1222 

Panel C: Industrial    
Benchmark 1 Historical 

average 
0.3395 0.3789 

Benchmark 2 Cap rate 0.4908 0.5255 
Pseudo OOS case 1: Know break dates 
and ex post mean cap rate 

Adjusted cap 
rate 

0.2515 0.3202 

Pseudo OOS case 2: OSS estimate break 
dates, but know ex post mean cap rate 

Adjusted cap 
rate 

0.3201 0.4130 

Pure OOS: OSS estimate break dates and 
mean cap rate 

Adjusted cap 
rate 

0.4330 0.5100 

 

  



Table F2: Regional out-of-sample forecasting error with five-year forecasting 
horizon 

Panel 1: London Retail 
 Forecasting variable Mean absolute error Root mean-squared error 
Benchmark 1 Historical average 0.2763 0.3074 
Benchmark 2 Cap rate 0.3651 0.4157 
Pure OOS Adjusted cap rate 0.2336 0.2721 

Panel 2: London Office 
Benchmark 1 Historical average 0.3427 0.4106 
Benchmark 2 Cap rate 0.5708 0.6329 
Pure OOS Adjusted cap rate 0.4537 0.5000 

Panel 3: London Industrial 
Benchmark 1 Historical average 0.3713 0.4165 
Benchmark 2 Cap rate 0.4747 0.5250 
Pure OOS Adjusted cap rate 0.4768 0.5564 

Panel 4: South East - Retail 
Benchmark 1 Historical average 0.2281 0.2493 
Benchmark 2 Cap rate 0.1776 0.2048 
Pure OOS Adjusted cap rate 0.1635 0.1729 

Panel 5: South East - Office 
Benchmark 1 Historical average 0.3565 0.4007 
Benchmark 2 Cap rate 0.3201 0.3499 
Pure OOS Adjusted cap rate 0.2465 0.2752 

Panel 6: South East - Industrial 
Benchmark 1 Historical average 0.3634 0.4040 
Benchmark 2 Cap rate 0.5021 0.5421 
Pure OOS Adjusted cap rate 0.4138 0.4925 

Panel 7: South West - Retail 
Benchmark 1 Historical average 0.2155 0.2385 
Benchmark 2 Cap rate 0.1429 0.1650 
Pure OOS Adjusted cap rate 0.1369 0.1882 

Panel 8: South West - Office 
Benchmark 1 Historical average 0.3270 0.3600 
Benchmark 2 Cap rate 0.3052 0.3635 
Pure OOS Adjusted cap rate 0.2498 0.3111 

Panel 9: South West - Industrial 
Benchmark 1 Historical average 0.2715 0.3024 
Benchmark 2 Cap rate 0.3839 0.4138 
Pure OOS Adjusted cap rate 0.3082 0.3510 

Panel 10: Eastern - Retail 
Benchmark 1 Historical average 0.2051 0.2392 
Benchmark 2 Cap rate 0.1648 0.2117 
Pure OOS Adjusted cap rate 0.1184 0.1286 

Panel 11: Eastern - Office 
Benchmark 1 Historical average 0.3657 0.4035 
Benchmark 2 Cap rate 0.4194 0.4522 
Pure OOS Adjusted cap rate 0.3112 0.3612 

Panel 12: Eastern - Industrial 



Benchmark 1 Historical average 0.4035 0.4461 
Benchmark 2 Cap rate 0.5509 0.6128 
Pure OOS Adjusted cap rate 0.5396 0.6112 

Panel 13: East Midlands - Retail 
Benchmark 1 Historical average 0.1867 0.2178 
Benchmark 2 Cap rate 0.1598 0.1891 
Pure OOS Adjusted cap rate 0.1508 0.1819 

Panel 14: East Midlands - Industrial 
Benchmark 1 Historical average 0.2839 0.3259 
Benchmark 2 Cap rate 0.4013 0.4382 
Pure OOS Adjusted cap rate 0.3848 0.4289 

Panel 15: West Midlands - Retail 
Benchmark 1 Historical average 0.2355 0.2589 
Benchmark 2 Cap rate 0.1214 0.1451 
Pure OOS Adjusted cap rate 0.1219 0.1722 

Panel 16: North West - Retail 
Benchmark 1 Historical average 0.1867 0.2192 
Benchmark 2 Cap rate 0.1211 0.1383 
Pure OOS Adjusted cap rate 0.1232 0.1521 

Panel 17: Yorks & Humber - Retail 
Benchmark 1 Historical average 0.2471 0.2908 
Benchmark 2 Cap rate 0.1437 0.1728 
Pure OOS Adjusted cap rate 0.2424 0.2732 

Panel 18: Yorks & Humber - Industrial 
Benchmark 1 Historical average 0.2748 0.3179 
Benchmark 2 Cap rate 0.4117 0.4423 
Pure OOS Adjusted cap rate 0.3191 0.3495 
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